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ABSTRACT 

This report presents a theoretical analysis of the visco- 

type shaft seal when operating concentrically in laminar flow. 

The analysis, which is patterned after the work of Boon and 

Tal, shows the development of the sealing coefficient and dissi- 

pation function. These two parameters have been computed for 

the range of seal geometries most likely to be encountered in 

practice and are presented in tabular form. 
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I. INTRODUCTION 

The visco seal, screw seal, viscosity pump, spiral groove seal or 

bearing are some of the various names given the device whose working 

principle is based on the head developed in a viscous fluid, enclosed in 

a thin annulus or slit, by means of grooves on a rotating shaft or plate. 

While the basic concept of the visco seal was formulated many years ago, 

only recently has the device been seriously considered as a sealing element 

in practical engineering systems. Recent studies of the visco seal, most 

of which have been made abroad, have been prompted by the need for reliable, 

long life, low leakage seals in critical engineering systems having demand- 

ing sealing specifications. Such systems are encountered in the nuclear 

power field and in the space programs. 

A series of studies of various sealing concepts has been completed by 

personnel of the Mechanical and Aerospace Engineering Department at the 

University of Tennessee (1, 2, 3, 4). These studies indicate that of the 

various sealing concepts which may be considered for critical applications, 

the visco seal seems to hold the most promise of successful application. 

A similar conclusion has also resulted from other "state of the art studies" 

(5) l 

Althouqh the contact tzyne seal, the mechanical face seal for example, 

is widely used in normal engineering applications, the basic sealing mech- 

anism is not well understood. Further, long experience points to a finite 

life. Considerable disagreement exists as to the most appropriate method 

of analysis and design (4). 

The contactless seal has the advantage of long life and a history of 

reliable service. While many of the contactless seals are characterized 

by large leakage rates, especially when used in compact designs, the visco 



seal has the additional advantage of low leakage rates. Further, the visco 

seal can be designed to function automatically as a shut down seal when the 

shaft is not rotating. From a critical review (6) of all known published 

studies of the visco seal, the work of Boon and Tal (7) appears to be the 

most comprehensive and detailed analysis available on the subject. 

The current program at the University of Tennessee, which is being 

conducted under auspices of the NASA, embraces both laminar and turbulent 

visco seal oneration under concentric and eccentric conditions. While the 

study of Boon and Tal considers only the laminar concentric case, this work 

was selected as the basis for initial experimental studies under the present 

program. The analysis presented in this report is patterned after the work 

of Boon and Tal and presents the values of the sealing coefficient and the 

dissipation function for a wide range of geometries in a form which can be 

readily used by the seal designer. 

II. THEORY 

The Sealing Coefficient 

Consider a screw formed on a shaft located concentrically within a 

cylindrical housing with a radial clearance c. The annular space is filled 

with a fluid and the shaft is moving relative to the housing with an angular 

velocity, w. The arrangement of the screw and housing is shown in Figure 1. 

The threaded length of the screw is 1, whereas the effective seal length is 

L. It has been observed that the performance of the visco seal or visco 

pump having a threaded housing and a plain shaft is essentially the same as 

for the arrangement shown in Figure 1. (8, 9). 

Figure 2 shows a developed view of the visco seal geometry with two 
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sets of coordinates. The (x, y) axes are along and normalto the direction 

of relative motion and the ( T,q) axes are parallel and normal to the 

grooves. The (x, Y> and (5 a-1 coordinate systems are related by: 

s - x cosd + y sin& 0) 

v\= y cosd - x sin& (2) 

For simplicity the plain surface is assumed to have a velocity U = l/2 COD. 

Assum$ng a Newtonian fluid having a negligible change in density, the 

equations of motion and continuity for laminar flow are: 

pBE= 
Dt 

F,- g + y- v2u (3) 

p&L= 
Dt 

2lA u- 
a5 + a,,, 

vd 
+ L 

- = 0 (4) 

Assuming steady incompressible flow, notin,o that c/D is so small as to render 

w negligible with negligible pressure change in the Z direction, and neglect- 

ing body forces as being small in comparison with viscous forces, there 

remains from equation (3) the following gradients: 

pu 1 a-?J -=-- a t2 P a5 (5) 
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Integration of (5) 

1 a? u= - - 
zp an 

and (6) gives: 

z*+ c,z-t-c, 

ie+ C-jt+ c4 

(7) 

(8) 

The velocities in the region of the grooves and in the region of the lands 

or ridges may be determined by noting the following boundary conditions: 

Along the lands Across the lands 

ur = U cos a at Z = 0 vr = - U sin cc at Z = 0 

Ur p 0 at Z = h, vr = 0 at Z = hr 

Along the grooves Across the grooves 

% = U cos a at Z = 0 % = - U sin a at Z = 0 

ug = 0 at Z = hg vg = 0 at Z = hg 

Using the above boundary conditions the following velocity components may 

be identified: 

Along the lands 

Along the grooves 

(9) 

(10) 
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Across the lands 

G ’ 
=-- Z!Z- 

c )( zp an r 
th,-r*) -u sin c~( I - -f-) 

r 

Across the grooves 

(11) 

(12) 

Noting that the axial velocity components are 

uY = u sin a and (13) 

vY = v cos a, 04) 

the axial flow components Q fr, Qsg, Qhr and Qhg, may be computed. The 

width of the flow path for the 5 land flow component is (1 - 8 )nD and 

the path width for the f groove flow is $ND. The ratio of the groove 

width to the groove plus land width is defined as x. 

$=b 
a+b See Figure 1 

The axial component of the 5 coordinate land flow is: 

J 
hr 

Q  v =(I-x)nD u,,dt 
0 

Substituting equation (9) and integrating, 

(1% 

(16) 

(‘17) 
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In a similar manner 

Q,, 
510 d: + I!Jh Co5 d: Sin d 2 I 

1 

08) 

(19) 

(20) 

The pressure gradients in equations (17) through (20) may be replaced by 

the more convenient axial gradients by noting that: 

Noting, from Figure 2, that 

k, = c, 

h = hg - h,, and 

hg =P c where 

h+c B=y, 

(23) 

(24) 

v-5) 

(26) 

and substituting equation (21), equations (17) and (18) become: 
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Q lTD(I-x)c3 333 
47 lzp by Sm2d + n13LU& co5 6 srn d 2 I (27) 

cosdc srn CL* (28) 

The law of continuity requires that 

Q =Q 
v\r WC 

Thus, 

Combining equations (19), (20), (22) and (30) it may be shown that 

(29) 

(30) 

(31) 

where: 

B = p3(1-‘d) + d 

Substituting equation (31) equation (19) becomes: 

Q r\r 

(32) 

(33) 



Substituting equatjon (32) equation (20) becomes: 

Qm = nDp3C3 3 Cos2d; FDUc p- fl%-*#-f) -- 
3 1q.m bY 2 C 0 I 

Sin cl: Cos 6 (35) 

X(k-0 
0 

+I= - (3 (36) 

Thus, Q.Rr = %g as required by equation (29). 

Writing the sine and cosine functions as tangents, letting t = tan a, and 

substituting equations (27)) (28) and (34) or (27)) (28) and (35) into 

equation (30), the axial flow becomes: 

C‘ = [ 
x t (l-x)(P3-O(B-d 

6( 1+t2) 1 

(37) 

(38) 

(39) 

hJhi,le the visco seal may, under certain conditions, be useful as a Sealing 

device when a net axial flow exists, the most useful situation would be to 

have Q equal to zero. Substituting: 

p for J@ , setting Q = 0, and rearranging: 
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w 9 m- 
Apc2 '6 

(40) 

The dimensionless group on the left of equation (40) is defined as the 

sealing coefficient. 

A=*= 
pht*) + ‘dtYI-k)(/33-I)z 

3t(l-8)(p-l)(p- I) 
(40 

It is observed thatA is a function of the seal geometry alone. Equation 

(41) has been programed for digital computation and the sealing coefficient 

has been computed for the following ranges of goemetry factors: 

t for a of 5" to 20" 

pfrom 2 to 19 

y from 0.1 to 0.8 

The variation of A as a function of .geometry is graphically shown in Figures 

3 - 6. 

Rote that the term L included in the sealing coefficient refers,as 

shown in Figure 1, to the active seal length and not to the total threaded 

length of the screw. 

The Dissipation Function 

Assuming steady state, neglecting thermal conduction and extrusion 

energy, it may be shown that the time rate of energy dissipation in the 

fluid by viscous action per unit vclume of flow is: (10, 11). 
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(43) 
From equations (9) through (12) 

%“P Et-= 

(45) 

(46) 

2 
(47) 

per unit 
area maY be @*ressed as: 

(49) 
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Substituting equations (4.4) through (47) 

(50) 

(51) 

(52) 

(53) 

The components of power loss may be evaluated as the product of q1 and the 

associated area. The land area and groove area are respectively: 

A, = (1 -x )ITDL (54) 

Ag = ~ITDL 65) 

Thus the components of power loss associated with the flow components are: 

qsr = (-wL cdc;, (56) 

67) 

68) 

(59) 

11 



Substituting c and P c for h, and hg respectively, and noting that the total 

power loss may be expressed as: 

9”9 
!v +'fg+ 'nrfqY(g3 

the total energy dissipation rate becomes: 

-I 
Replacing the pressure gradients of equation (61) with s according to 

equations (21), (31) and (32), notS.ng from equation (41) that 

(60) 

(62) 

and writing the sine and cosine functions as tangents, equation (61) becomes: 

p3(1+t2)+ t’x( 1-a) (p3-V 11 (63) 

Equation (63) can be written as: 

(64) 

where , the dissipation function,ccrresponding to the bracketed term of 

equation (63), is a function of the seal geometry. 
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Q = $6 4” (65) 

(W 

(67) 

@'represents the loss due to Couette flow and is independent of the angle 

a. $8' represents the loss due to Poiseuille flow and depends upon a, B ' 
and $ . Equations (OS), (66) and (67) have been programed for digital 

computation. 

The variation of ip with geometry is graphically shown in Figures 

3 - 7. 

Simplified Analysis of Dissipation Function 

It has been suggested that p', due to Poiseuille flow, was small in 

comparison to $1 and could be neglected (12). This approach assumes that 

the power loss can be written as: 

WA ah $=r at w3) 

The velocity gradients are taken as U/c over the land area A,, and U/kc 

over the groove area A g* 

13 



Thus, 

s= UT 4 
UAr +uAg 

PC 1 

Noting that 

Ag = XrrDL, and 

Ar = (I -‘d)mDL, 

nDLU2 
s-f-y-- l-X+X 

B 1 
or 

(69) 

(70) 

(70 

(72) 

(73) 

where 

($1 = ,A+$ 

as in equation (66). 

(74) 

The magnitude of the error caused by neglecting the Poiseuille contri- 

bution to the power loss is shown in Figure 7. The ratio $'/$t varies,for 

the region covered by Appendix B, from 0.045% to 71%. The smaller error 

occurs with visco seals having low values of a and g while the more 

significant errors occur with larger values of a and I . Since the larger 

values of a and Y are of most interest for practical seals, as may be seen 

from Figures 3 - 6, the simplified evaluation of the dissipation function 

may often be questionable. 

14 



III. DISCUSSION 

Maximum Seal Head 

From equation (Lll) it is noted that for selected values of 
/A 9 u, L 

and c, the maximum seal head corresponds to a minimum value for A . 

Taking partial derivatives of A with respect to ‘d , p and t, it is 

observed that: 

bA 
-sii=O when Y= 0.5 

bA 
ap =o when P = 3.6533 

P3 1 0.5 m - =o at when t 
p3+ Y(I-‘d)(p3-I)L 

t = 0.28066 (a = 15.6772"). From equation (41) A min = 10.9677 and 

Apmax becomes: 

Apmax = 0.54706 Te (75) 

Minimum Power Loss 

The values of a 4 ' and 8 which produce the maximum sealing head do 

not, when substituted in equation (63)) give the minimum dissipation function. 

This fact can be observed from Figures 3 to 5. It was shown by Boon and Tal 

that a limiting asymptotic value of the power loss was reached as ‘d-c 1 

and P -00 (7). Introducing equation (41) for A and rearranging, equation 

(64) becomes: 

(76) 
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For the limiting conditicns A+ = 6 and 

qmin - rrDUcAp (77) 

Using X = 0.5, /= 3.6533, and t = 0.28066, the values corresponding to 

ApmxJ + - 0.74296, and from equation (76) the power loss for the seal 

giving Apmax is: 

9 = 1.3581 ITDUCAP = l-3581 qmin. (78) 

The limiting condition can not be reached in practice; however, low values 

of $ can be obtained by appropriate selection of the geometry factors a, 

P) and ‘6. For selected values of P, Boon and Tal computed the values 

of ‘d and t for which $ became a minimum. These results are presented in 

Table 1. 

TABLE 1 

Geometry Factors for Minimum Power Loss for 
Selected Values of 0. After Boon and Tal (7) 

I t cc A 4 
2 

3 

4 

5 

6 

7 

8 

9 

10 

0.59 oS6418 29"26' 11.43 1.0330 

0.65 0.31798 17'38' 12.03 0.6764 

0.70 0.21112 ll"55' 12.42 0.5840 

0.74 0.15530 8To 13.44 0.5120 

0.77 0.12177 6"57' 14.70 0.4549 

0.79 0.09928 S"40' 15.90 0.4122 

0.81 0.08379 4"47' 17.31 0.3732 

0.83 0.07267 k09' 18.90 0.3381 

0.84 0.06355 3"38! 20.13 0.3154 
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Design Generalizations 

The seal designer may have only limited opportunity to utilize the 

designs of Table 1 due to limitations on screw generating machines, problems 

of differential thermal exransion, and tolerance requirements imposed by the 

fabrication techniques employed. Also, while a number of theoretical and 

empirical analyses of the visco seal have been made, truly precise experi- 

mental data suitable for correlation are not available (6, 13). The 

generation of such data is one of the major objectives of the current 

project. In the interim, however, some observations may be helpful to those 

wishing to use the present analysis in visco seal design. 

Comparing Figures 3, k, 5, which cover a normal range of a, it will be 

noted that the minimum value of the sealing coefficient obtainable for the 

various angles does not differ greatly. However, the seals with the lower 

helix angles allow for a wider variation in fi for a given sealing coefficient. 

The lower helix angles also result in lower dissipation functions. As shown 

in Figure 6, this difference is most evident in the desirablep range of 2.5 

to 7.0. While a ‘d value of 0.5' produces the lowest sealing coefficient at all 

helix angles, a substantial reduction in the dissipation function can be ob- 

tained with only a modest increase in the sealing coefficient by utilizing a 

larger value of 3 . 

The present analysis assumes laminar flow throughout the visco seal. 

Therefore, based on the Taylor instability criterion this analysis is strictly 

valid for operation below the critical Reynolds numbers which are: 

17 



Re r 
=, y < 4l.lJiyF (79) 

Re g 
i y/y < 41.1&7cJE (80) 

The frictional losses occur largely in the land regions of the seal and the 

head developed is more dependent upon the groove flow. Thus, it would be 

expected that equation (79) should be used as the limiting condition when 

the dissipation function is being calculated and equation (80) is more 

appropriate when the sealing coefficient is being considered. The data 

presently available lend support to this generalization (12). 

The present analysis also assumes that the plain and threaded surfaces 

are concentric. Such a situation is most unlikely in actual practice and no 

data are presently available which account for the expected eccentricity. 

A very limited analysis which attempts to include eccentricity has been 

made (12). This analysis starts with the assumption that the seal head 

developed varies inversely with eccentricity in a manner similar to the 

variation of axial flow through a plain annulus as a function of eccentricity. 

If both the shaft and sleeve are ungrooved, thus forming a simple annular 

flow system, then /g = land 2/= 0 orl. Under this condition equations 

(38) and (39) reduce to: 

3 = 1 and "6 = 0. 

18 
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Thus equation (37) becomes 

Q cone a 
nDc 3LE -- 
12p L 

However, when Q is set equal to zero the pressure gradient becomes zero 

and the seal is incapable of developing a sealing head. Equation (81) 

represents ths flow throuah a concentric annulus due to the imposed 

vadient. Also, for the olain annulus it may be shown that the flow under 

eccentric conditions due to the imposed gradient is expressed by 

nDc 3 
Q ccc = - 

AE? 
12/" L [l + 1.5E2] , (82) 

where the factor I 1 + 1.5& 2 1 varies from 1 to 2.5 as the eccentricity ratio 

varies from 0 to 1 (4). h'hile the laminar flow through an eccentric annulus 

due to an im-posed pressure gradient is correctly presented by equation (82), 

it aprears premature to assume that the developed seal head will deteriorate 

in a similar manner. A series of experimental tests, including measurement 

of the seal eccentricity, is scheduled as a part of this program and should 

help to resolve this question. Nevertheless, all of the experimental data 

available reflect the fact that the actual head developed in the visco seal 

is less than that given by equation (41). Hughes (14) found that the head 

developed by the visco seal was about 12% below the calculated value, 

Asanuma (8) noted a deviation of about 22%, and Boon and Tal (7) suggest 

that a deviation of 20 to 50% be assumed in making use of the theoretical 

head calculation. The deviations referred to above were due to errors in 

temperature measurement, thermal expansion of the seal, vibration, and other 
experimental anamolies as well as the lack of concentricity. 
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NOMENCLATUFE 

A area 

B geometry factor defined by equation (33) 

Cl,C2,C3,Ch constants of integration 

‘5~~6 

D 

F 

L 

Q 

U 

a 

b 

C 

h 

h 

1 

P 

994 

9' 

q" 

t 

UYV9W 

X,Y,Z 

W 
a 

coefficients defi.ned by equations (38) and (39) 

seal diameter 

field force 

active seal length 

sealant flow 

surface velocity 

axial land width 

axial groove width 

radial clearance 

groove depth 

film thickness (hg,h,) 

ler-@h of seal thread 

pressure 

power loss 

power loss per unit surface area 

power loss per unit flow volume 

tangent of helix angle a 

velocity components in f , YJ+ , z coordinates 

coordinates 

coordinates 

helix angle 



h+c 
C 

b 
a+b 

sealing coefficient 

dissipation function 

Couette component in H 
Poiseuille component in * 
absolute viscosity 

eccentricity ratio 

density 

Subscripts 

r 

g 

5' 

W 

sg 

xg 

Y 

cone 

ccc 

refers to land 

refers to groove 

refers to 5 direction in region of land 

refers to y\ direction in region of land 

refers to $ direction in region of groove 

refers to n direction in region of groove 

refers to axial component 

concentric 

eccentric 

21 



. . _ 

REFERENCES CITED 

1. Stair, W. K., "A Research Program on Dynamic Seals," Proceedings of 
the ORNL Conference on Rotating Machinery for GCR Application, 
April 2-4, 1962, USAEC Report TID-7631. 

2. Carden, W. H., "The Mechanical Face Seal. A Survey of.Literature on 
Sealing Theory," 
March 1962. 

Report ME S-62-TN3, The University of Tennessee, 

3. Arnold, F., W. K. Stair, "The Labyrinth Seal - Theory and Design," 
Report ME S-62-1, The University of Tennsssee, March 1962. 

4. Stair, W. K., "Liquid-Buffered Bushing Shaft Seals for Large Gas 
Circulators," Int. Conf. on Fluid Sealing, Paper Cs, April 17-19, 
1961, BHRA, Harlow, Essex, England. 

5. Aerojet-General Nucleonics," An Evaluation of ths State-of-the-Art of 
High Speed Seals, Report AN-AGCR-759, December 1964. 

6. Stair, W. K., "The Visco Seal - A Survey," Report ME S-62-2, The 
University of Tennessee, March 1962. 

7. Boon, E. F., S. E. Tal, "Hydrodynamische Dichtung fur rotierende Wellen," 
Chemie-Ing-TechnSk, Vol. 31, No. 3, January 31, 1959, pp. 202-12. 

8. Asanuma, T., "Studies of the Sealin? Action of Viscous Fluids," Int. Conf. 
on Fluid Sealin,?, Paper A3, April 17-19, 1961, BHRA, Harlow, Essex, 
England. 

9. Frossel, W., "Hochtourige Schmierolpumpe," 
1960, po. 195-203. 

Konstrucktion, Vol. 12, No. 5, 

10. Knudsen, J. G., D. L. Katz, Fluid Dynamics and Heat Transfer, McGraw-Hill 
Book CO., Inc., New York, 1958. 

11. Pinkus, O., B. Sternlicht, Theory of Hydrodynamic L,ubrication, McGraw- 
Hill Eook Co., Inc., New York, 1961. 

12. McGrew, J. M., J. II. McHugh, . _ "4nalysis and Test of the Screw Seal in 
Laminar and Turbulent Operation," The General Electric Advanced 
Technolo_g L.aboratories, Report No. 63GLG6, May 3, 1963. 

13. Stair, W. K "Theoretical and Experimental Studies of Visco-Type Shaft 
Seals, '; ‘Me chanical and Aerospace EnTineering Research Report 
FE-64-537-1, October 23, 1964. 
NASA Grant ~~~-587. 

A Semi-annual progress report on 

14. Hughes, G. P., "Shaft Seal for High Gas Pressures," Int. Conf. on Fluid 
Sealing, Paper Cl, April 17-19, 1961, BHRA, Harlow, Essex, En,qland. 

22 



I 
-J 1 INTEFFw J 

I$= ambient pte~sure TDton e a=(I-Y)trDtanor 

.b = 8~~0 tanpc 

FIG. 1 - BASIC ELEMENTS OF A VISCO SEAL 



a=(dn0 +an d: 

FIG. 2 - VISCO SEAL CEOMLTfW 
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